1 Clin Epidemiol Vol. 51, No. 3, pp. 233-236, 1998
Copyright © 1998 Elsevier Science Inc. All rights reserved.

ELSEVIER

0895-4356/95/319.00
Pl 50895-4356(97)00283-7

On Miettinen’s Multivariate Confounder Score

- *
David Strauss
DePARTMENT OF STATIsTICS, UNIVERSITY OF CALIFORNIA, RIVERSIDE, CALIFORNIA

ABSTRACT. Consider a regression model for the effect of a treatment on an outcome variable in the presence
of potential confounders. It is common to test for main effects and interactions of the treatment variable; if the
confounding variables are discrete, one might then compare the treatment groups within strata formed by suitable
covariate patterns. An alternative, due to Miettinen, is to stratify according to a “multivariate confounder score”
and test for treatment effects within strata. This test has been shown to be flawed, and the method appears
largely to have fallen into disuse. Here we show that such stratification nevertheless provides a sound and
often useful graphical comparison of treatment and control groups. j CLIN EPIDEMIOL 51;3:233-236, 1998.
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INTRODUCTION

One frequently deals with regression models for an outcome
variable Y on a categorical “treatment” or “exposure” vari-
able X and potential confounder variables Z,, . . . , Z,. The
model may be an ordinary multiple regression, with a con-
tinuous dependent variable Y, or it may, for example, be a
logistic regression with a binary Y-variable such as lived/
died. Two issues usually of interest are; (1) Does X have an
effect on Y (or, at least, is it associated with Y) when the
7s are taken into account? and (2) If so, how if at all does
the pattern of association of X and Y vary according to the
values of the Zs?

The standard approach to (1) uses regression-based tests
of the main effects of X and examines how much these
change when Z is added to the model. If such effects are
present, and if the Zs are categorical, one proceeds to (2)
by stratification on those Zs judged to have significant inter-
actions with X. As is well known, however, if there are sev-
eral such Zs the result may be too many strata containing
too few observations. This is especially likely occur when
both X and many of the Zs are correlated with an underlying
variable such as “risk.”

Miettinen [1] suggested a different approach. The regres-
sion model is used to predict a Y-value after adjustment for
treatment effects, called a multivariate confounder score,
for each observation. Observations are partitioned into
homogenous strata on the basis of their scores, and the com-
parison of treatment groups is carried out within strata. The
method has intuitive appeal, but it was subsequently shown
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that the resulting significance test is flawed, and the ap-
proach seems to have fallen into disuse {2].

The purpose of this article is to show that despite its
shortcomings for task (1), the method can provide a sound
and often revealing graphical comparison of treatment
groups [task (2)]. It will be especially helpful when the con-
founders all represent aspects of a single unobserved variable
such as “susceptibility” or “risk.” This is illustrated with an
example that compares two treatment groups across a spec-
trum of risk.

MULTIVARIATE CONFOUNDER SCORE

Consider the following model for the expected value of the
outcome variable Y on a binary treatment indicator variable
X and categorical potential confounder variable Z = (Z,,

. Zk):
E(Y) = c(z) + X = 1] t(z). (1)

Here c(z) is the expected value of Y, for a “control” unit
with covariates z, If ] is an indicator variable, and t(z) is
the additional effect of the treatment. If t is a constant then
the effect of the treatment is additive; otherwise Eq. (1)
indicates interaction between treatment and covariates.

The thultivariate confounder score for the ith individual
may be defined as

S = c(z). ( (2)

This is obtained from Eq. (1) by setting X to zero. The mean
of Y, is either S + t(z)) or S, depending on whether the ith
observation is a treatment or a control unit. In this sense,
S may be interpreted as the expected Y-score corresponding
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to z, (after subtraction of the treatment effect for units re-
ceiving the treatment).

Note that, formally, S is a function only of the covariates.
Given an infinite population, the procedure now would be
to stratify the observations into subgroups within which S
is constant. Let A be such a stratum; it consists of two sub-
sets, a treatment group A, for which X = | and a control
group A,. Using the notation {V|A} to denote the average
value of V over the subset A, we have from Eq. (1) that

{EY|Aq} = {c(z)|As}

{EY|A;} = {c(2)|A} + {t(2)IA}},

and thus

{EY|A} — {EYIA0} = {dz)]A}, ' (3)

since the function c is constant in stratum A. This means
that the confounding effects due to Z have been removed:
the difference in means between treatment and control
groups within A is equal to the average treatment effect in
A. If interactions are present, so that t is not constant, this
will vary between the strara.

In practice the set of observations is finite and such a
stratification would be too fine, in the sense that most strata
would lack either treatment or control observations. In-
stead, one would stratify into a reasonable number of sub-
groups within which the S values are fairly homogeneous.
Further it would generally be necessary to work with a
maode! such as the generalized linear form

g{EY} = oX + 2187, 4)

for a suitable link function g. Here Z, is identically 1. This
leads to estimated confounder scores

S = IhZ,.

This is the form of confounder score originally proposed by
Miettinen [1]. Note that it would not be appropriate to work
with fitted values from the model

EY = XyZ,

which excludes X, instead of Eq. (4). To do so would assign
a portion of the effect of X to the confounders.

Miettinen {1] suggested that the sample be partitioned
into roughly homogeneous strata on the basis of the con-
founder scores, and that differences in Ys for X = 0 and
X = 1 be tested within strata in the usual ways. Pike et al.
[2] showed, however, that in general the nominal signifi-
cance level in such tests underestimates thar the actual sig-
nificance level. Their simulations indicated that a nominal
5% test may in practice have a 20% or more chance of
rejecting a true null hypothesis. Essentially, the problem is
as follows: Miettinen’s test is roughly equivalent to a com-
parison of the residual sum of squares associated with Eg.
(1) with the (larger) residual sum of squares in a simple
regression of Y on S. But the latter is in general inflated
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because S is not exactly the regression function of Y on the
Zs when X is excluded. Because of this bias, Breslow and
Day [3] and other sources recommend the standard regres-
sion approach over the use of a confounder score.

When there is a fairly large number (10 or more, say) of
covariartes that are all correlared with an unobserved vari-
able such as “risk,” the number of significant treatment-
covariate interactions may be large. In this case stratifica-
tion by all the indicated covariates parterns may result in
strata that are both sparse and too numerous. An additional
problem in interpretation is that there will be no natural
ordering of the strata with respect to overall risk. In this
case, once the preliminary significance testing has been car-
tied out the multivariate confounder score could be used 1o
generate an altemative stratification. This may result in a
useful descriptive comparison of treatment and control
groups within a convenient number of strata that are homo-
geneous with respect to risk. As shown in Eq. (3), apart
from the effects of sampling error in the regression estimates
and the use of “coarse” strata, such comparisons are free of
biases related to the confounder variables.

Miettinen {1] suggested the use of five strata, each con-
taining equal numbers of observations. The optimal number
of strata will depend on the application, however. In partic-
ular, (1) the more data are available and the better the mod-

" el's fir, the more strata can be used; (2) there is no need to

insist on equal number of cases. For example, if Y is a binary
lived/died variable and if deaths are relatively uncommon
then variances within strata will be approximarely equal if
boundaries are drawn so that the numbers of deaths (either
actual or expected from the model) are the same for each
stratum.

In the case of categorical covariates there will usually be
many covariate pattems aggregated into a single risk stra-
tum. In some situations, even within strata the treatment
units will systematically tend to be associated with the
higher-risk {or lowet-risk) covariate patterns than the con-
trol units. This may induce a bias, though usually a small
one, essentially because the stratification is not sufficiently
fine. If needed, the bias is easily corrected with the use of
direct standardizacion [4]. Either the treatment or the con-
trol group may be taken as the standard population, the rate
for the other group being then standardized to it, or if ap-
propriate both rates may be standardized to an external
population.

EXAMPLE

There has been increasing use of gastrostomy procedures
and subsequent tube feeding for individuals with serious
mental retardation and related disabilities. In the most se-
vere cases tube feeding is accepted to be necessary for the
patient’s survival. The procedure carries some risk, however,
and for less severely disabled individuals the risks and bene-
fies have not been fully assessed [5]. Eyman et al. [6], working



viettinen’s Multivariate Confounder Score

12%

8%
FIGURE 1. Mortality rates for
person-years with (dots) and
without (triangles) tube feed-
ing (within each risk octile).
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with a sample of all severely disabled children with mental
retardation in California who receive state assistance, found
that the mortality rate of tube-fed individuals was several
times higher than that of those not tube-fed. In that study,
however, only limited attempts were made to control for
potential confounding variables. Doubtless much of the dif-
ference in mortality rates was due to a higher rate of serious
medical conditions in the tube-fed group.

Using the same data source, Strauss et al. [7] compared
mortality rates for those with and without. tube feeding. In
this study an attempt was made to control for all potential
confounding variables for which data was available. These
included known risk factors such as immobility and type of
residence (e.g., large state institutions versus small group
homes), together with presence or absence of major medical
problems (heart disease, upper respiratory infection, pneu-
monia, esophageal conditions, etc.). The unit of analysis
was a person-year (the period between a subject’s consecu-
tive birthdays). For the set of 13,688 person-years, a logistic
regression model was developed for the binary lived/died
dependent variable Y on the “exposure” variable X—pres-
ence or absence of tube feeding that year—together with a
set of covariates {Z;}. These included the risk factors, to-
gether with the child’s age and the calendar year. This form
of logistic regression has been frequently employed in the
Framingham study [8] and elsewhere.

The final model showed significant main effects of tube
feeding (X) and of some 10 of the covariates. Many of the
latter had significant interactions with X: the tube feeding-
mortality association was generally weaker for subjects with
serious medical conditions than for those without. This is
consistent with the earlier suggestion that tube-fed subjects
tend to have more recorded and unrecorded medical prob-
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lems. A parametric interpretation would be quite compli-
cated in view of the large number of interactions. Further,
as noted previously, the altemative of stratification by all
the confounding variables would result in a large number
of unordered strata containing rather few observations. For
this reason, we preferred a graphical approach based on the
multivariate confounder scores.

The confounder scores were used to partition the person-
years into eight fairly homogeneous “risk-octiles.” Cut
points were chosen so that equal numbers of deaths oc-
curred in each group. Within each stratum, the mortality
rate for the not-tube-fed group was simply the raw percent-
age of deaths. For the tube-fed group, rates were directly
standardized. The not-tube-fed group was chosen as stan-
dard population here because it was substantially the larger
of the two. Mortality rates for person-years with and without
tube feeding within each risk octile are plotted in Figure 1.

The spacings between the eight groups have been made
equal in Figure 1. This is arbitrary, and other choices would
have been possible. The issue will generally not be critical,
as typically one would be interested in whether the relative
risk of treatment and control tends to increase or decrease
with risk rather than, for example, the linearity of such
a trend.

The figure shows that the relative risk associated with
tube feedgi‘rl\g is about 2.0 in the lowest risk groups, but de-
creases almost to unity as the overall risk level increases.
(Note, however, that the excess risk—the difference of the
two rates—is only slightly larger in the lower risk groups
than in the higher ones.) As noted previously, it would not
be proper to carry out an overall significance test or to com-
pute confidence intervals etc. for the data of the figure.

Strauss et al. {7] concluded that the advantage of tube
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feeding for the less debilitated subjects was still not estab-
lished, and that a randomized prospective study may in some
cases be ethically justified. Our main point here, however,
is that the pattern revealed in Figure 1 would be difficult
to obtain without use of the multivariate confounder score.

DISCUSSION

We have seen that although treatment effects should not
be tested using groups defined form multivariate confounder
scores, such groups may provide a useful descriptive compar-
ison. Formal inference may be based on the regression
model in the standard way, while graphs such as Figure 1
may provide a helpful visual summary. The method is likely
to be useful when most covariates are related to an unob-
served variable, such as risk. This situation is not uncom-
mon. For example, in studies of mortality for people with
mental retardation living in different residential settings,
confounder variables such as age, gender, and various mea-
sures of disability were all associated with mortality risk
[5,9,10].

The method invites comparison with the use of propen-
sity scores [11]. This stratifies observations into subgroups
within which the chance of receiving the treatment, P (X =
1|2), is approximately constant. It is known that within
strata the distribution of covariates z is then roughly the
same among the treatment and control subgroups [11]. Such
“balancing” of the zs removes most of the bias when an
outcome variable Y is compared across treatment and con-
trol groups. Formally, it is in fact easy to show that the
method satisfies the same condition in Eq. (3} as does the
multivariate confounder score. A potential disadvantage of
the propensity score is that when strata are defined on the
basis of the P(X = 1|z), strata with large values of P will
consist mostly of treatment observations and those with
small values will contain mostly controls. This may cause
numerical instability.

As pointed out by a reviewer, if the model contains inter-
actions between the treatment variable X and the covariates
then the two sets of confounder scores obtained by assigning
X to 0 or to 1 will not be monotonically related. This means
that the grouping of observations into quantiles may differ
according to whether we adjust for the effect of the treat-
ment or the control group. It would, of course, be possible to’
construct a graph for each case. If the two showed markedly
different patterns, however, the conclusions to be drawn
may not be so clear.
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One limitation of the method should be noted: generally
the strata lack a biological interpretation. Instead, each stra-
tum contains observations at similar risk but with possibly
very different covariate patterns. When strata can he
grouped sensibly on biological characteristics, they may he
relatively risk-homogeneous. We have seen, however, that
when there are a large number of confounders, all related
to “risk,” a biologically meaningful grouping is not always
possible. In such cases the multivariate confounder score
may be a useful tool.
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